Introduction to Quantum Computing

Kitty Yeung, Ph.D. in Applied Physics

Creative Technologist + Sr. PM
Microsoft
www.artbyphysicistkittyyeung.com
@KittyArtPhysics
@artbyphysicistkittyyeung

July 12, 2020
Hackaday, session 14
Other communities, session 6

Class structure

- Comics on Hackaday - Introduction to Quantum

Computing every Sun

- 30 mins - 1 hour every Sun, one concept (theory, hardware, programming), Q\&A
- Contribute to Q\# documentation http://docs.microsoft.com/quantum
- Coding through Quantum Katas
https://github.com/Microsoft/QuantumKatas/
- Discuss in Hackaday project comments throughout the week
- Take notes

We've seen in page 9 that with two qubits, 13 there are four possible configurations: both qubits in $\mid 0>s$ or $\mid 1>s$, or one in $\mid 0>$ with the other in $\mid 1>$, What if we make the $|0\rangle|0\rangle$ case in superposition with the $|1\rangle|1\rangle$ case? Or $|0>| 1>$ in superposition with $|1>| 0>$?

a|0 0> + d|1 $1>$

If we set the system to be in this case, we know that if we measure the first qubit and get $|0\rangle$, the second qubit must be in $|0\rangle$, without needing to measure it.

We can also measure the second qubit to know what the first qubit is without measuring it.

Similarly in this case, if the first qubit is $\mid 0>$, the second qubit must be |1>. If the first is $\mid 1>$, the second must be $|0\rangle$ 。

The qubits are correlated. This is called "entanglement".

Entanglement

```
Bell states
|\varphi \pm}\rangle=\frac{|01\rangle\pm|10\rangle}{\sqrt{}{2}}\mathrm{ and }|\mp@subsup{\phi}{}{\pm}\rangle=\frac{|00\rangle\pm|11\rangle}{\sqrt{}{2}
```


Take $\left|\phi^{+}\right\rangle$as an example, upon measuring the first qubit, one obtains two possible results:

1. First qubit is 0 , get a state $\left|\phi^{\prime}\right\rangle=|00\rangle$ with probability $1 / 2$.
2. First qubit is 1 , get a state $\left|\phi^{\prime \prime}\right\rangle=|11\rangle$ with probability $\frac{1}{2}$.

If the second qubit is measured, the result is the same as the above. This means that measuring one qubit tells us what the other qubit is.

CHSH Game

- CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt. Paper published in 1969

Alice and Bob go to a casino and play the CHSH game. They are physically separated and cannot communicate. The referee shows Alice a bit ${ }^{66} L^{99}$ and Bob a bit ${ }^{64} M^{99}$ in either 0 or 1. Alice and Bob need to report their bits " ${ }^{69}{ }^{99}$ and ${ }^{66} b^{99}$ to the referee. If $L \cdot M=a \oplus b$, they win. Otherwise, they lose. Alice and Bob can set up a strategy beforehand.

Alice and Bob go to a casino and play the CHSH game。 They are physically separated and cannot communicate. The referee shows Alice a bit ${ }^{66} L^{99}$ and Bob a bit ${ }^{66} M^{99}$ in either 0 or 1. Alice and Bob need to report their bits "a" and "b" to the referee. If $L \cdot M=a \oplus b$, they win. Otherwise, they lose. Alice and Bob can set up a strategy beforehand。

CLASSICAL STRATEGY $\leq 75 \%$ chance of winning

Alice and Bob go to a casino and

CLASSICAL STRATEGY ธ75\% chance of winning

QUANTUM STRATEGY
285\% chance of winning!
of course, that involves entanglement. They pre-entangle qubits to $1 / \sqrt{ } 2(|00\rangle+|11\rangle)$ 。

L	M	win if $L \cdot M=a \oplus$	a	b		a
0	0	0	0	1	1	0
0	1	0	0			
1	0	0			0 0	0
0	0					
1	1	1	0	1	0	0
			1	0		

QUANTUM STRATEGY
$\geq 85 \%$ chance of winning!
of course, that involves entanglement.
They pre-entangle qubits to $1 / \sqrt{ } 2(|00>+| 11>)$ 。

Q\# exercise:

QDK Sample code

https://docs.microsoft.com/quantum/

Homework

- The Quantum Katas project (tutorials and exercises for learning quantum computing) https://github.com/Microsoft/QuantumKatas
- CHSH Game

General rotation

In general, rotation gates, R, about an axis can be described by the angles ϕ and θ :

$$
\begin{aligned}
& R_{z}(\phi)=\left[\begin{array}{cc}
e^{-i \phi / 2} & 0 \\
0 & e^{i \phi / 2}
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{gathered}
R_{x}(\theta)=\left[\begin{array}{cc}
\cos \frac{\theta}{2} & -i \sin \frac{\theta}{2} \\
-i \sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right] \\
=R_{z}\left(\frac{\pi}{2}\right) R_{y}(\theta) R_{z}\left(-\frac{\pi}{2}\right)
\end{gathered}
$$

More discussions

- The CHSH Game: Lecture 7 of Quantum Computation at CMU Ryan O'Donnell
- https://www.youtube.com/watch?v=1nh-pixnM4I
- Classical scenarios

No-Cloning Theorem

Assume we have a function, Copy, such that:

$$
\text { Copy }(|\psi\rangle \otimes|0\rangle)=|\psi\rangle \otimes|\psi\rangle
$$

which would expand out to (substituting for $|\psi\rangle$):

$$
\begin{gather*}
=(\alpha|0\rangle+\beta|1\rangle) \otimes(\alpha|0\rangle+\beta|1\rangle) \\
=\alpha^{2}|00\rangle+\beta^{2}|11\rangle+\alpha \beta(|01\rangle+|10\rangle) . \tag{1}
\end{gather*}
$$

You can also evaluate the Copy function by expanding $|\psi\rangle$ first:

$$
\begin{align*}
\operatorname{Copy}(|\psi\rangle & \otimes|0\rangle)=\operatorname{Copy}(\alpha|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|0\rangle) \\
& =\alpha(\operatorname{Copy}|00\rangle)+\beta(\operatorname{Copy}|10\rangle) \\
& =\alpha|00\rangle+\beta|11\rangle . \tag{2}
\end{align*}
$$

Here we have our contradiction, because both (1) and (2) cannot be true at the same time for an arbitrary state.

Participate

- July 16 Azure Quantum Developer Workshop https://aka.ms/AQDW

Azure Quantum
PREVIEW

Questions

- Post in chat or on Hackaday project
https://hackaday.io/project/168554-quantum-computing-through-comics
- Past Recordings on Hackaday project or my YouTube https://www.youtube.com/c/DrKittyYeung

